FR09 7-11 December 2009 Kyoto, Japan

Challenges and Innovative Technologies On Fuel Handling Systems for Future Sodium Cooled Fast Reactors

M.ChassignetAREVA NPG.PreleEDF-R&DG.RodriguezCEA Cadarache

edf CeCl

AREVA

- General description & objectives of FHS for FBR
- Review of French FHS
 - Superphenix (sodium route)
 - EFR (gas route)
- Challenges and current works on French SFR project
 - Reduce of investments costs
 - Reduce of impact of refueling operations on scheduled outages
 - Fast Whole Core Discharge
 - Pooling of FHS
 - Research on fuel assembly cleaning process
 - Assessment of minor actinides impact on FHS design
 - Assessment of alternative solutions for FHS
- Synthesis and future works

Objectives of FHS in a FBR

- Reactor refueling system provides the means of transporting, storing and handling for reactor core assemblies, including fuel, blanket, control, and shielding elements
- FHS have to fulfill the following tasks :

Superphenix Example of French sodium route

EFR project Example of French gas route

Reduce of investments costs

- A specific tool has been developed which objective is to find out the optimal rotating plugs diameters of different types of IVFH systems
- From the viewpoints of primary vessel diameter optimization, two concepts reveal to be very interesting
 - 1) Two rotating plugs, a FACM in the LRP and a DLCM in the SRP
 - One rotating plug and a slitted ACS with pantograph type FHM
- Design of a pantograph and slitted ACS has been performed

AREVA

- Pantograph arm with double scissors
- Telescopic device for temperature monitoring of FA below slit
- Compact and safe design

Reduce impact of refuelling operations on scheduled outages

- Some tracks have been investigated aiming at reducing impact of refueling operations on scheduled outages duration :
 - Reduce unavailability time of refueling operations
 - To improve performances of FHS
 - To handle fuel assemblies with high residual power
- The sodium flask design is based on operating feedback from previous studies :
 - SPX's A Frame for sodium bucket
 - EFR's gas flask for design of the flask body and trolley
- This system allows handling in sodium of fuel assemblies with residual power of about 35-40kW

Fast whole core discharge External Vessel Storage Tank

- A Whole Core Discharge is an exceptional event which can be considered necessary in view of a comprehensive reactor inspection
- Not considered in normal outages plans, WCD could direct choices on FHS
 - Sodium route is the preferred solution for fast whole core discharge
 - Duration of a WCD has to be about 1 to 3 months
- Design of External Vessel Storage Tank
 - Filled with sodium (400m³)
 - 800 storage positions in less than 8 meters
 - Total inspection is possible and all components are easy to maintain
- Final decision concerning context of WCD will include other considerations, such as global economy and safety optimizations

External Vessel Storage Tank

AREVA

Pooling of FHS

- Pooling of FHS has been investigated in case of two units
- All FH equipments are located in a dedicated building
 - + EVST
 - Fuel Pool
 - New Fuel Storage
 - New Fuel Examination and Receipt Facility
 - Washing pits
- A sodium flask allows the transfer of assemblies from the primary vessel to the EVST
- A gas flask allows the transfer of assemblies from the EVST to the cleaning equipments or the new fuel handling route

Research on fuel assembly cleaning process

- CEA is working on improving the cleaning process for fuel assemblies with a fast immersion in a saline solution or in a sodium hydroxide solution
 - Objective : Quickly and safely remove of sodium with concentrated alkaline solution instead of pure water
 - Principle : Basis on the NOAH process
- First series of tests were done on small amount of sodium
 - Selection of most appropriate salt
 - Additional tests will be carried out in coming years
- Considering French experimental feedback analysis, several improvements could provide benefits on the load factor :
 - Potential advantages on hot drainage with inert gas blowing prior to cleaning => reducing sodium residual inventory
 - Integration of the experimental feedback of the PX and SPX cleaning processes => design of efficient and improved washing pit,
 - Validation at industrial scale of a quick immersion cleaning process => possible cleaning of FAs with high residual power by reducing the time for cleaning

Kinetic experiment of sodium in alkaline solution

AREVA

Assessment of minor actinides impact on FHS design

- Fuel assemblies with minor actinides have different consequences following the recycling mode
- Whatever the considered recycling mode, MA have important consequences on transport and new fuel handling systems

Assessment of alternative solutions for FHS

- eDF has investigated an handling system in a cell with three ways of improvement :
 - Simplify fuel handling systems
 - Improve access for inspection of internal structures
 - Avoid problems of core compaction by introducing the ACS in the core
- Main principles of the concept :
 - Access to fuel assemblies is possible following removal of ACS during outages
 - Handling of fuel is performed in gas with a dedicated machine
- Due to technological difficulties it was decided not to pursue this solution

Synthesis and future works

Fuel handling is a very important part in the design of a FBR because of its many stakes

The design of FHS must be considered at the early stage to take into account several parameters such as:

- Reactor design and the choice between loop or pool type reactor
- Core design and its policy in terms of breeding ratio, minor actinides burning, etc...
- Size of the reactor: large scale or modular medium size scale reactors, and its purpose: irradiation, prototype, power
- Targeted availability factor identified for the reactor
- Safety requirements
- Progress on R&D and engineering fields will orientate and provide a more accurate definition of the definitive Fuel Handling System for French SFR linked with the reactor and core concept.

Acknowledgements

- G.Rodriguez, M.Saez, E.Sanseigne, F.Beauchamp (CEA)
- G.Prele, A.Capitaine (eDF)
- S.Dumas, C.Penigot (AREVA NP)
- Global FR09 Meeting organization

Thank you for your attention !

ed